Spatial scale of stereomotion speed processing.

نویسندگان

  • Kevin R Brooks
  • Leland S Stone
چکیده

To examine the spatial scale of the mechanisms supporting the perception of motion in depth defined by binocular cues, we measured stereomotion speed discrimination thresholds as a function of stimulus size using a two-interval speed comparison task. Stimuli were either random dot stereogram (RDS) bars featuring both the changing disparity (CD) and the interocular velocity difference (IOVD) cues to motion in depth or dynamic random dot stereogram (DRDS) bars featuring the CD cue alone. Monocular speed discrimination performance was also assessed, using half-images of the RDS stimulus. In addition, subjects' stereoacuity for stationary versions of the binocular stimuli was measured. Stimuli ranged in vertical extent from 1.25 to 40 min. Sensitivity to speed differences was strongly related to stimulus height for DRDS stimuli. Performance decreased rapidly as stimulus size was reduced, becoming nearly random for heights below 5 min. However, for RDS stimuli, speed discrimination performance declined with reductions in stimulus size at a far slower rate, providing superior performance at every stimulus size used. Monocular performance was superior still for the majority of subjects, yet showed a similar rate of decline to binocular RDS stimuli. We conclude that the spatial resolution of the CD mechanism and its static disparity inputs is, on average, nearly nine times more coarse than the IOVD system and its monocular motion inputs. Static stereoacuity controls show that this finding cannot be explained by differences in the disparity signals available in our RDS and DRDS stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereomotion suppression and the perception of speed: accuracy and precision as a function of 3D trajectory.

The precision and accuracy of speed discrimination performance for stereomotion stimuli were assessed for several receding 3D trajectories confined to the horizontal meridian. It has previously been demonstrated in a variety of tasks that detection thresholds are substantially higher when subjects observe a stereomotion stimulus than when simply viewing one of its component monocular half-image...

متن کامل

Study of Numerical Processing Speed, Implicit and Explicit Memory, Active and Passive Memory, Conservation Abilities, and Visual-Spatial Skills of Students with Dyscalculia

Background and Purpose: Learning disorder is one of the common disorders in students, which can lead to the occurrence of educational problems and secondary disorders in them. Based on psychopathological criteria, dyscalculia is one of the subcategories of learning disorder. Children with this disorder have problems in perception of spatial relations and in different cognitive abilities. Theref...

متن کامل

Object speed derived from the integration of motion in the image plane and motion-in-depth signaled by stereomotion and looming

We investigate the influence of local motion in the retinal image plane on the perception of speed-in-depth. Observers judged the apparent speed-in-depth of a square plane of dynamic dots that moved towards the observer. Dots forming the surface of the plane underwent random-direction motion in the image plane. We examined the consequences of changing the dots' image-plane speed on the apparent...

متن کامل

Stereomotion perception for a monocularly camouflaged stimulus.

Under usual circumstances, motion in depth is associated with conventional stereomotion cues: a change in disparity and differences between object velocities in each monocular image. However, occasionally these cues are unavailable due to the fact that in one eye the object may be occluded by, or camouflaged against appropriately positioned binocular objects. We report two experiments concerned...

متن کامل

Binocular processing of motion: some unresolved questions.

The unresolved questions relating to binocular processing of motion include: Is the perceived speed of the motion in depth (MID) of an approaching object inversely proportional to the time to collision?; What visual information supports judgements of the direction of MID?; What is the relation between binocular and monocular processing in the perception of MID? We review whether the perception ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 2006